Post hoc test becoming applied to substantial most important effects. 1. Chanrion, M. et al. A gene expression signature that could predict the recurrence of tamoxifen-treated primary breast cancer. Clin Cancer Res 14, 17442 (2008). two. Jansen, M. P. et al. Molecular classification of tamoxifen-resistant breast carcinomas by gene expression profiling. J Clin Oncol 23, 7320 (2005). three. van de Vijver, M. J. et al. A gene-expression signature as a predictor of survival in breast cancer. N Engl J Med 347, 1999009 (2002). four. van’t Veer, L. J. et al. Gene expression profiling predicts clinical outcome of breast cancer. Nature 415, 530 (2002). 5. Cardoso, F. et al. Clinical application of your 70-gene profile: the MINDACT trial. J Clin Oncol 26, 7295 (2008). six. Choi, J. K., Yu, U., Yoo, O. J. Kim, S. Differential coexpression analysis using microarray data and its application to human cancer. Bioinformatics 21, 43485 (2005). 7. Ein-Dor, L., Kela, I., Getz, G., Givol, D. Domany, E. Outcome signature genes in breast cancer: is there a distinctive set Bioinformatics 21, 171 (2005). 8. Kothapalli, R., Yoder, S. J., Mane, S. Loughran, T. P. Jr. Microarray final results: how accurate are they BMC Bioinformatics three, 22 (2002). 9. Ioannidis, J. P. Microarrays and molecular analysis: noise discovery Lancet 365, 454 (2005). ten. Bozic, I. et al. Accumulation of driver and passenger mutations for the duration of tumor progression. Proc Natl Acad Sci U S A 107, 185450 (2010). 11. Ohashi, K. et al. Lung cancers with acquired resistance to EGFR inhibitors sometimes harbor BRAF gene mutations but lack mutations in KRAS, NRAS, or MEK1. Proc Natl Acad Sci U S A 109, E21273 (2012). 12. Musgrove, E. A. Sutherland, R. L. Biological determinants of endocrine resistance in breast cancer. Nat Rev Cancer 9, 6313 (2009). 13. Hu, R., Qiu, X., Glazko, G., Klebanov, L. Yakovlev, A. Detecting intergene correlation alterations in microarray analysis: a brand new strategy to gene selection. BMC Bioinformatics ten, 20 (2009). 14. Hwang, T. Park, T. Identification of differentially expressed subnetworks according to multivariate ANOVA. BMC Bioinformatics 10, 128 (2009). 15. Britschgi, A. et al. JAK2/STAT5 Inhibition Circumvents Resistance to PI3K/ mTOR Blockade: A Rationale for Cotargeting These Pathways in Metastatic Breast Cancer. Cancer Cell 22, 79611 (2012). 16. Li, J. et al. Identification of high-quality cancer prognostic markers and metastasis network modules.EI1 Nat Commun 1, 34 (2010).Raltegravir 17.PMID:24463635 Pitroda, S. P., Khodarev, N. N., Beckett, M. A., Kufe, D. W. Weichselbaum, R. R. MUC1-induced alterations inside a lipid metabolic gene network predict response of human breast cancers to tamoxifen therapy. Proc Natl Acad Sci U S A 106, 58371 (2009). 18. Ma, X. J. et al. A two-gene expression ratio predicts clinical outcome in breast cancer sufferers treated with tamoxifen. Cancer Cell five, 6076 (2004). 19. Eddy, J. A., Hood, L., Price tag, N. D. Geman, D. Identifying tightly regulated and variably expressed networks by Differential Rank Conservation (DIRAC). PLoS Comput Biol six, e1000792 (2010). 20. Keshava Prasad, T. S. et al. Human Protein Reference Database–2009 update. Nucleic Acids Res 37, D7672 (2009). 21. Raju, R. et al. NetSlim: high-confidence curated signaling maps. Database (Oxford) 2011, bar032 (2011). 22. Kall, L., Storey, J. D. Noble, W. S. QVALITY: non-parametric estimation of qvalues and posterior error probabilities. Bioinformatics 25, 964 (2009). 23. Press, W. H. Numerical recipes: the art of scientific computi.