007). 29. Field, H. A., Kelley, K. A., Martell, L., Goldstein, A. M.
007). 29. Field, H. A., Kelley, K. A., Martell, L., Goldstein, A. M. Serluca, F. C. Evaluation of gastrointestinal physiology using a novel intestinal transit assay in zebrafish. Neurogastroenterol. Motil. 21, 30412 (2009). 30. Wealthy, A. et al. Kit signaling is essential for improvement of coordinated motility patterns in zebrafish gastrointestinal tract. Zebrafish. 10, 15460 (2013). 31. Holmberg, A., Olsson, C. Holmgren, S. The effects of endogenous and exogenous nitric oxide on gut motility in zebrafish Danio rerio embryos and larvae. J. Exp. Biol. 209, 2472479 (2006). 32. Maeda, H. et al. Fluorescent probes for hydrogen peroxide primarily based on a nonoxidative mechanism. Angew. Chem. Int. Ed Engl. 43, 2389391 (2004). 33. Niethammer, P., Grabher, C., Appear, A. T. Mitchison, T. J. A tissue-scale gradient of hydrogen peroxide mediates speedy wound detection in zebrafish. Nature 459, 99699 (2009). 34. Flores, M. V. et al. Dual MAO-B Storage & Stability oxidase inside the intestinal epithelium of zebrafish larvae has anti-bacterial properties. Biochem. Biophys. Res. Commun. 400, 16468 (2010). 35. Ha, E. M., Oh, C. T., Bae, Y. S. Lee, W. J. A direct role for dual oxidase in Drosophila gut immunity. Science 310, 84750 (2005). 36. Rokutan, K. et al. Nox enzymes and oxidative strain within the immunopathology of your gastrointestinal tract. Semin. Immunopathol. 30, 31527 (2008). 37. Erikstein, B. S. et al. Cellular anxiety induced by resazurin leads to autophagy and cell death via production of reactive oxygen species and mitochondrial impairment. J. Cell Biochem. 111, 57484 (2010). 38. Yan, B. et al. Il-1beta and Reactive Oxygen Species Differentially Regulate Neutrophil Directional Migration and Basal Random Motility within a Zebrafish Injury-Induced Inflammation Model. J. Immunol. (2014). 39. Belousov, V. V. et al. Genetically encoded fluorescent indicator for intracellular hydrogen peroxide. Nat. Techniques 3, 28186 (2006). 40. Field, H. A., Ober, E. A., Roeser, T. Stainier, D. Y. Formation of your FGFR1 Storage & Stability digestive system in zebrafish. I. Liver morphogenesis. Dev. Biol. 253, 27990 (2003). 41. Cocchiaro, J. L. Rawls, J. F. Microgavage of zebrafish larvae. J. Vis. Exp. e4434 (2013). 42. Goldsmith, J. R., Cocchiaro, J. L., Rawls, J. F. Jobin, C. Glafenine-induced intestinal injury in zebrafish is ameliorated by mu-opioid signaling by way of enhancement of Atf6-dependent cellular stress responses. Dis. Model. Mech. 6, 14659 (2013). 43. Brock, C. et al. Opioid-induced bowel dysfunction: pathophysiology and management. Drugs 72, 1847865 (2012). 44. Karnovsky, M. J. Roots, L. A “Direct-coloring” thiocholine system for cholinesterases. J. Histochem. Cytochem. 12, 21921 (1964). 45. Behra, M. et al. Acetylcholinesterase is necessary for neuronal and muscular development within the zebrafish embryo. Nat. Neurosci. five, 11118 (2002). 46. Sarter, M., Parikh, V. Howe, W. M. Phasic acetylcholine release plus the volume transmission hypothesis: time for you to move on. Nat. Rev. Neurosci. ten, 38390 (2009). 47. Soreq, H. Seidman, S. Acetylcholinesterase–new roles for an old actor. Nat. Rev. Neurosci. two, 29402 (2001). 48. Kilbinger, H. Wessler, I. Inhibition by acetylcholine with the stimulation-evoked release of [3H]acetylcholine from the guinea-pig myenteric plexus. Neuroscience 5, 1331340 (1980). 49. Ball, E. R. et al. Ultra-structural identification of interstitial cells of Cajal in the zebrafish Danio rerio. Cell Tissue Res. 349, 48391 (2012). 50. Seiler, C., Abrams, J. Pack, M. Characterization of zebrafish int.