ular characterization of Spodoptera frugiperda-Bacillus thuringiensis Cry1Ca toxin interaction. Toxicon 51: 68192. 36. Negre V, Hotelier T, Volkoff AN, Gimenez S, Cousserans F, et al. SPODOBASE: an EST database for the lepidopteran crop pest Spodoptera. BMC Bioinformatics 7: 322. 37. Loeb MJ, Martin PA, Hakim RS, Goto S, Takeda M Regeneration of cultured midgut cells after exposure to sublethal doses of toxin from two strains of Bacillus thuringiensis. J Insect Physiol 47: 59906. 38. Baldwin KM, Hakim RS Growth and differentiation of the larval midgut epithelium during molting in the moth, Manduca sexta. Tissue Cell 23: 41122. 39. Ohlstein B, Spradling A The adult Drosophila posterior midgut is maintained by pluripotent stem cells. Nature 439: 47074. 40. Benz G, Perron JM The toxic action of Bacillus thuringiensis `exotoxin’ on Drosophila reared in yeast-containing and yeast-free media. Experientia 23: 87172. 41. Estruch JJ, Warren GW, Mullins MA, Nye GJ, Craig JA, et al. Vip3A, a novel Bacillus thuringiensis vegetative insecticidal protein with a wide spectrum of activities against lepidopteran insects. Proc Natl Acad Sci U S A 93: 5389394. 42. Sampson MN, Gooday GW Involvement of chitinases of Bacillus thuringiensis during pathogenesis in insects. Microbiology 144: 2189194. 43. Zhang X, Liang Z, Siddiqui ZA, Gong Y, Yu Z, et al. Efficient screening and breeding of Bacillus thuringiensis subsp. kurstaki for high toxicity against Spodoptera exigua and Heliothis armigera. J Ind Microbiol Biotechnol 36: 81520. 44. Tabashnik BE, Van Rensburg JB, Carriere Y Field-evolved insect resistance to Bt crops: definition, 17460038 theory, and data. J Econ Entomol 102: 2011025. 45. Anilkumar KJ, Sivasupramaniam S, Head G, Orth R, Van SE, et al. Synergistic interactions between Cry1Ac and natural cotton defenses limit survival of Cry1Ac-resistant Helicoverpa zea on Bt cotton. J Chem Ecol 35: 78595. 46. Herfs W Die vertraeglichkeit von Bacillus thuringiensis Praeparaten mit chemishen DMXB-A biological activity Pflanzenschutzmittlen und mit Beistoffen. Z Pflanzenkra Pflanzenschutz 72: 58499. 47. MacIntosh SC, kishore G-M, Perlak FJ, Marrone PG, Stone 22948146 TB, et al. Potentiation of Bacillus thuringiensis insecticidal activity by serine protease inhibitors. J Agric Food Chem 38: 1145152. 48. Cancino-Rodezno A, Alexander C, Villasenor R, Pacheco S, Porta H, et al. The mitogen-activated protein kinase p38 is involved in insect defense against Cry toxins from Bacillus thuringiensis. Insect Biochem Mol Biol 40: 583. 49. Pearson G, Robinson F, Beers GT, Xu BE, Karandikar M, et al. Mitogen-activated protein kinase pathways: regulation and physiological functions. Endocr Rev 22: 15383. 50. Tabashnik BE, Finson N, Johnson MW, Moar WJ Resistance to Toxins from Bacillus thuringiensis subsp. kurstaki Causes Minimal Cross-Resistance to B. thuringiensis subsp. aizawai in the Diamondback Moth. Appl Environ Microbiol 59: 1332335. 51. Herrero S, Gonzalez-Cabrera J, Ferre J, Bakker PL, de Maagd RA Mutations in the Bacillus thuringiensis Cry1Ca toxin demonstrate the role of domains II and III in specificity towards Spodoptera exigua larvae. Biochem J 384: 50713. 52. Hernandez-Martinez P, Ferre J, Escriche B Susceptibility of Spodoptera exigua to 9 toxins from Bacillus thuringiensis. J Invertebr Pathol 97: 24550. 53. Belli G, Molina MM, Garcia-Martinez J, Perez-Ortin JE, Herrero E Saccharomyces cerevisiae glutaredoxin 5-deficient cells subjected to continuous oxidizing conditions are affected in the expression of